MATH 2060 TUTO 8

8. Let F(x) be defined for $x \ge 0$ by F(x) := (n-1)x - (n-1)n/2 for $x \in [n-1, n), n \in \mathbb{N}$. Show that F is continuous and evaluate F'(x) at points where this derivative exists. Use this result to evaluate $\int_a^b [x] dx$ for $0 \le a < b$, where [x] denotes the greatest integer in x, as defined in Exercise 5.1.4.

Ans: To show that f is continuous, it suffices to check that
$$(clearly \lim_{x \to n} F(x) = F(n))$$

$$\lim_{x \to n} F(x) = F(n) \quad \forall n \in \mathbb{N}.$$

Indeed,
$$\lim_{x \to n^{-}} F(x) = \lim_{x \to n^{-}} \left[(n-1)x - (n-1)n/2 \right] = (n-1)n - (n-1)n/2 = \frac{(n-1)n}{2}$$

$$F(n) = (n)n - n(n+1)/2 = \frac{n}{2}(2n-n-1) = \frac{(n-1)n}{2}$$

$$\int_{D} f \text{ is ets on } Io, \infty).$$

$$\frac{\int (x) - F(u)}{x - n} = \frac{\int f(n-1)x - (n-1)n/2 - (n-1)n/2}{x - n}$$

$$= \lim_{x \to n} \frac{(n-1)(x-n)}{x - n} = n - 1.$$

$$\lim_{X \to n^{+}} \frac{F(x) - F(n)}{x - n} = \lim_{X \to n^{+}} \frac{hx - n(n+1)/2 - (n-1)n/2}{x - n}$$

$$= \lim_{X \to N^+} \frac{N(X-N)}{x-N} = N$$

So F is not diff. at any NEW.

Also
$$F'(x) = n-1 = [x]$$
 for $x \in (n-1, n)$, $n \in \mathbb{N}$.
 $F'(0) = 0 = [0]$ (right derivative)

Now a) F is ets on [a,b] b) $F'(x) = [[x]] \forall x \in [a,b] \setminus E$ where $E := [a,b] \cap |V|$ is a finite set

c) $[[x] \in R[a,b]$ since it is a step for. By FTC (1st form), $\int_{a}^{b} [[x]] dx = F(b) - F(a)$ = ([b]b - [b]([b]+1)/2) - ([a]a - [a]([a]+1)/2)

14. Show there does not exist a continuously differentiable function f on $[0, 2]$ such that $f(0) = -1$, $f(2) = 4$, and $f'(x) \le 2$ for $0 \le x \le 2$. (Apply the Fundamental Theorem.)
Aw: Suppose f is such a fcn.
Aw: Suppose f is such a fcn. Then a) f is cts on [0,2] (since f is diff. on [0,2])
b) $f'(x) = f'(x) \forall x \in [0,2]$ (trivial)
b) $f'(x) = f'(x) \forall x \in [0,2]$ (trivial) c) $f' \in R[0,2]$ (since f' is cts on $[0,2]$)
$\frac{1}{R} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$
$\frac{1}{f(z) - f(o)} = \int_{0}^{z} f'(x) dx$
$=) \qquad 4 - (-1) \leq \int_0^2 2 \mathrm{d}x$
=> 5 & 4, impossible.
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
So there is no such f.

7.3.8 Substitution Theorem Let $J := [\alpha, \beta]$ and let $\varphi : J \to \mathbb{R}$ have a continuous derivative on J. If $f : I \to \mathbb{R}$ is continuous on an interval I containing $\varphi(J)$, then

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

17. Use the following argument to prove the Substitution Theorem 7.3.8. Define $F(u) := \int_{\varphi(\alpha)}^{u} f(x) dx$ for $u \in I$, and $H(t) := F(\varphi(t))$ for $t \in J$. Show that $H'(t) = f(\varphi(t))\varphi'(t)$ for $t \in J$ and that

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx = F(\varphi(\beta)) = H(\beta) = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

Ans: Sime f is cts on I:=[a,b], F[C] (2nd form) implies that $F(u) = \int_{q(a)} f(x) dx$ is diff. on [a,b] and F'(u) = f(u) $\forall u \in [a,b]$ (Note $u(a) \in I$)

By Chain Rule, $H = F \circ Q$ is diff. on Jand $H'(t) = F'(Q(t)) \cdot Q'(t)$ $\forall t \in J$

Now, a) H is cts on $[\alpha, \beta]$ b) $H'(t) = F'(\varphi(t)) \cdot \varphi'(t)$ $= f(\varphi(t)) \cdot \varphi'(t)$ $\forall t \in [\alpha, \beta]$ c) $(f \circ \varphi) \cdot \varphi' \in R[\alpha, \beta]$ since it is cts on $[\alpha, \beta]$

By FTC (1st form), $\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = H(\beta) - H(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha))$ i.e. $\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx$

3. Let f and g be bounded functions on I := [a, b]. If $f(x) \le g(x)$ for all $x \in I$, show that $L(f) \le g(x)$ L(g) and $U(f) \leq U(g)$.

Ans: Suppose $|f(x)|, |g(x)| \leq M \quad \forall x \in [a,b].$

Let P = (xo, x, ..., xn) be a partition of [a, b]

Then, $\forall k = 1, ..., n$,

 $-M \leq f(x) \leq g(x) \leq M \quad \forall x \in [X_{k-1}, X_k],$ $\Rightarrow -M \leq \inf_{[X_{k-1}, X_k]} f \leq \inf_{[X_{k-1}, X_k]} g \leq M$

 $\sum_{k=1}^{n}\inf_{[X_{k-1},X_{k}]}f(\chi_{k}-\chi_{k-1})\leq\sum_{k=1}^{n}\inf_{[X_{k-1},X_{k}]}g(\chi_{k}-\chi_{k-1})\leq|M(b-a)|$ $L(f;P) \leq L(g;P) \leq M(b-a)$

Since (*) is true for any $P \in \mathcal{P}([a,b])$ of [a,b].

we have $L(f) := \sup\{L(f;P) : P \in \mathcal{P}([a,b])\}$ $L(g) := \sup\{L(g;P) : P \in \mathcal{P}([a,b])\}$ both exist

and

 $L(f) \leq L(g)$

Similarly, we can show that $\bigcup(f) \leq \bigcup(g)$

5.	Let f, g, h be bounded functions on $I := [a, b]$ such that $f(x) \le g(x) \le h(x)$ for all $x \in I$. Show
_	that if f and h are Darboux integrable and if $\int_a^b f = \int_a^b h$, then g is also Darboux integrable with
	$\int_a^b g = \int_a^b f.$

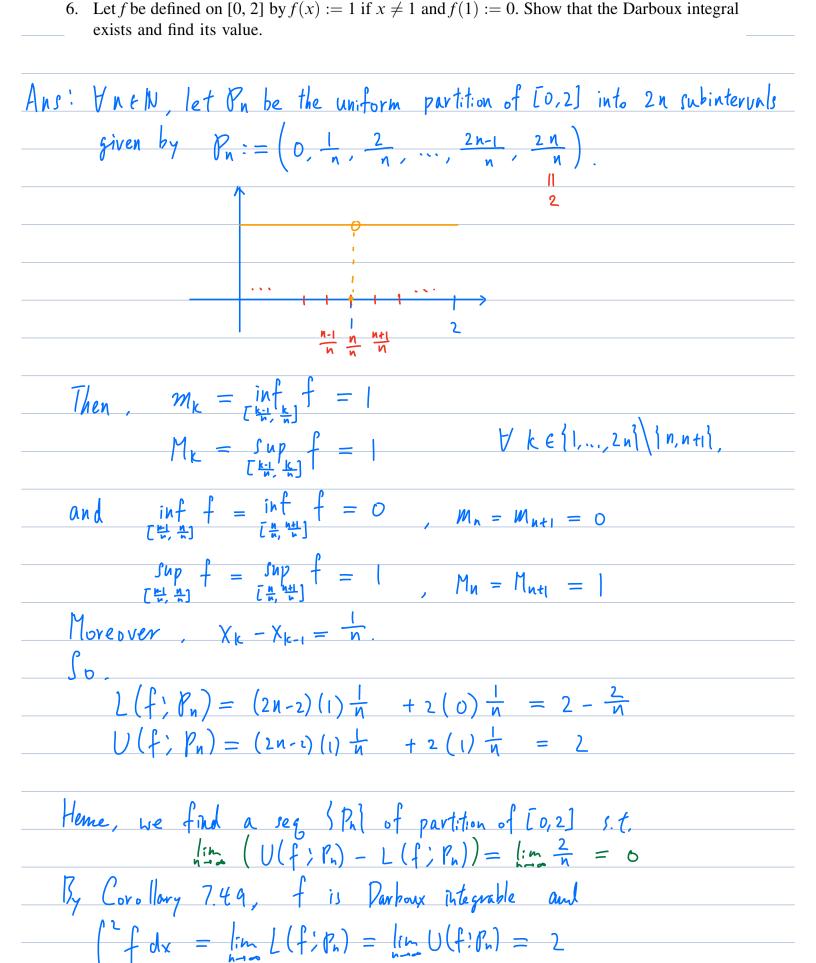
Ans: Since
$$f$$
 and h are Darboux integrable, we have
$$L(f) = U(f) = \int_a^b f$$

$$L(h) = U(h) = \int_a^b h$$

By Ex3,
$$f(x) \leq g(x) \leq h(x)$$
 $\forall x \in [a,b]$ implies that $L(f) \leq L(g) \leq L(h)$ $U(f) \leq U(g) \leq U(h)$

Since
$$\int_a^b f = \int_a^b h$$
, we have $L(g) = U(g) = \int_a^b f = \int_a^b h$.

Hence g is Parboux integrable with
$$\int_{a}^{b} g = \int_{a}^{b} f = \int_{a}^{b} h$$



15. Let f be defined on $I := [a, b]$ and assume that f satisfies the Lipschitz condition $ f(x) - f(y) \le K x - y $ for all x, y in I . If \mathcal{P}_n is the partition of I into n equal parts, show
that $0 \le U(f; \mathcal{P}_n) - \int_a^b f \le K(b-a)^2/n$.
Ans! Write Pn = (xo, x,, xn)
Since f is Lipschitz, home cts on [a,b], Saf exists
Toppover.
$\exists t_i \in [x_{i-1}, x_i] s.t. f(t_i) = M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$ $\exists s_i \in [x_{i-1}, x_i] s.t. f(s_i) = m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$
$\exists s_i \in [x_{i-1}, x_i] s.t. f(s_i) = m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$
$P_y \operatorname{def}_{\cdot,\cdot} L(f; P_n) \leq \int_a^b f \leq U(f; P_n)$.
Thus,
$0 \leq U(f; P_n) - \int_n^b f \leq U(f; P_n) - L(f; P_n)$
$= \sum_{i=1}^{n} \left(M_i - M_i \right) \left(X_i - X_{i-1} \right)$
$= \sum_{i=1}^{n} \left(f(t_i) - f(s_i) \right) \left(\chi_i - \chi_{i-1} \right)$
· · · ·
$\leq \sum_{i=1}^{n} \left \left(\left t_{i} - S_{i} \right \left(\left $
$\leq \left(\sum_{i=1}^{\infty} \left(\chi_{i} - \chi_{i-1}\right)^{2}\right)$
$= \left(\sum_{i=1}^{n} \left(\frac{b-a}{n} \right)^{2} \right)$
$\frac{1}{i=1}$ $\binom{n}{n}$
$= ((b-a)^2/n) $